Search results for "gradient plasticity"
showing 10 items of 10 documents
Energy-Residual-Based approach to gradient plasticity
2008
The “energy-residual-based approach” mentioned in the title consists in a thermodynamically consistent procedure for the formulation of a phenomenological plasticity model of either strain gradient, or nonlocal (integral) type. The authors have developed this procedure on the last ten years. It seem therefore appropriate to present an update of this theory at this forum. For brevity we shell limit ourselves to strain gradient plasticity.
A link between the residual-based gradient plasticity theory and the analogous theories based on the virtual work principle
2009
A link is shown to exist between the so-called residual-based strain gradient plasticity theory and the analogous theories based on the (extended) virtual work principle (VWP). To this aim, the former theory is reformulated and cast in a residual-free form, whereby the insulation condition and the (nonlocal) Clausius–Duhem inequality, on which the theory is grounded, are substituted with equivalent residual-free ingredients, namely the energy balance condition and the residual-free form of the Clausius–Duhem inequality. The equivalence of the residual-free formulation to the original one is shown, also in their ability to cope with energetic size effects and interfacial energy ones. It emer…
Unified thermodynamic framework for nonlocal/gradient continuum theories
2003
Abstract A thermodynamic framework, equipped with the concept of nonlocality (energy) residual, is utilized to address nonlocal/gradient internal variable material models. A unified procedure is provided for either nonlocal and gradient materials, which makes it possible to determine the thermodynamic restrictions upon the constitutive equations, and in particular the pertinent state equations, the consistent form of the dissipation power and the constitutive expression of the nonlocality residual. Additionally, for gradient models, the associated nonstandard boundary conditions are derived, pointing out their basically constitutive nature and their substantial differences from the standard…
Thermodynamics-based gradient plasticity theories with an application to interface models
2008
AbstractIn the framework of small deformations, the so-called residual-based gradient plasticity theory is reconsidered and improved. Using the notion of moving geometrically necessary dislocations (GNDs), suitable micromechanics interpretations are heuristically given for the higher order boundary conditions and the long distance particle interactions. Also, a comparison is made between this theory and the analogous virtual work principle (VWP)-based one, whereby their respective conceptual and methodological features are pointed out. The conditions under which the two theories lead to a same constitutive model are investigated, showing that, correspondingly, a certain indeterminacy exhibi…
Interfacial energy effects within the framework of strain gradient plasticity
2009
AbstractIn the framework of strain gradient plasticity, a solid body with boundary surface playing the role of a dissipative boundary layer endowed with surface tension and surface energy, is addressed. Using the so-called residual-based gradient plasticity theory, the state equations and the higher order boundary conditions are derived quite naturally for both the bulk material and the boundary layer. A phenomenological constitutive model is envisioned, in which the bulk material and the boundary layer obey (rate independent associative) coupled plasticity evolution laws, with kinematic hardening laws of differential nature for the bulk material, but of nondifferential nature for the layer…
An energy residual-based approach to gradient effects within the mechanics of generalized continua
2012
AbstractGeneralized continua exhibiting gradient effects are addressed through a method grounded on the energy residual (ER)-based gradient theory by the first author and coworkers. A main tool of this theory is the Clausius-Duhem inequality cast in a form differing from the classical one only by a nonstandard extra term, the (nonlocality) ER, required to satisfy the insulation condition (its global value has to vanish or to take a known value). The ER carries in the nonlocality features of the mechanical problem through a strain-like rate field, being the specific nonlocality source, and a concomitant higher-order long-range stress (or microstress) field. The thermodynamic restrictions on …
Nonlocal interface mechanical models
2007
The paper presents a nonlocal elastic damage-frictional interface model. The reason to introduce nonlocal mechanical features inside the constitutive relations is justified by the fact that there are several circumstances, in which the interface displays inside an extended process zone with microstructural spatial interactions. Typically, spatial bridging mechanical effects can be effectively modeled by integral (strongly nonlocal) stress-strain relations. The paper develops an elastic nonlocal model with local isotropic damage and the relations are constructed following a thermodynamical consistent approach.
A method to transform a nonlocal model into a gradient one within elasticity and plasticity
2014
Abstract A method based on the principle of the virtual power (PVP) is presented, by which a mechanical problem of nonlocal elasticity, or plasticity, is transformed into one of gradient nature. Different Taylor series expansion techniques are applied to the driving local strain fields of the nonlocal problem, either full spatial expansion within the bulk volume, or uni-directional expansion along the normal to the thin boundary layer. This, at the limit when the boundary layer thickness tends to zero, makes the PVP of the nonlocal model transform itself into one featuring a counterpart gradient model. Also, for a class of “associated” nonlocal and gradient elasticity models (i.e. the kerne…
A thermodynamically consistent formulation of nonlocal and gradient plasticity
1998
Strain gradient plasticity, strengthening effects and plastic limit analysis
2010
Abstract Within the framework of isotropic strain gradient plasticity, a rate-independent constitutive model exhibiting size dependent hardening is formulated and discussed with particular concern to its strengthening behavior. The latter is modelled as a (fictitious) isotropic hardening featured by a potential which is a positively degree-one homogeneous function of the effective plastic strain and its gradient. This potential leads to a strengthening law in which the strengthening stress, i.e. the increase of the plastically undeformed material initial yield stress, is related to the effective plastic strain through a second order PDE and related higher order boundary conditions. The plas…